垃圾渗滤液处理新技术-厌氧氨氧化技术

发布日期:2023-01-12

垃圾渗滤液处理新技术(-)厌氧氨氧化技术

垃圾渗滤液污染物浓度高,成份复杂,处理难度高。随着排放标准要求不断提高,技术的重要性愈加凸显。我国渗滤液处理技术包含土地处理、物化处理、生物处理等。其中土地处理无法单独使用,由于处理难度问题和占地问题,近年来已很少应用。


目前常用技术


物化处理一般作为垃圾渗沥液处理中的预处理和深度处理;生物处理经济、有效地去除有机污染物,但单独采用生物处理一般无法达标,需要和其他工艺有机结合。目前大多采用包含预处理、生物处理、深度处理、污泥及浓缩液处理四项工艺内容的组合工艺。

  • 渗滤液预处理重点发展前期降低有机物和氨氮负荷,调节碳氮比,提高垃圾渗沥液的可生化性的相关技术,可以为后续生化处理节能增效。

  • 生化处理重点是加大对垃圾渗沥液高效生化处理技术的开发,如短程硝化反硝化技术、厌氧氨氧化技术等,一方面降低垃圾渗沥液的处理成本,另一方面提高氨氮的去除效果。

  • 深度处理-膜浓缩液处理和其他深度处理方式,重点是加快研究经济、可行的膜浓缩液处理技术,同时研究其他非膜法深度处理技术,如高级氧化、高效蒸发等。


新技术---厌氧氨氧化技术


厌氧氨氧化是指在厌氧的条件下,微生物直接以NH4作为电子供体,以作为电子受体,将NH4和NO2转变成N2的生物氧化过程。


厌氧氨氧化的新工艺

1

OLAND(Oxygen limited autotrophic nitrification and denitrification)工艺

OLAND工艺是部分硝化与厌氧氨氧化相耦联的生物脱氮反应系统。该工艺其原理是通过限氧调控(溶解氧0.1~0.3mg/L)实现了硝化阶段亚硝酸盐的稳定积累,并实现了生物脱氮在较低温度(22~30℃)下的稳定运行。OLAND工艺中,溶解氧是限氧亚硝化阶段的主要影响因素,而生物量和基质浓度、pH值和温度则影响厌氧氨氧化过程。

2

SHARON(single reactor for high activity 

ammonia removal over  nitrite)-厌氧氨氧化工艺

SHARON—厌氧氨氧化工艺指在两个反应器中分别实现部分硝化和厌氧氨氧化反应,具有优化两类细菌的生存环境、运行性能稳定的特点。该工艺的原理是利用硝化菌在较高温度下生长速率明显低于亚硝化菌生长速率的特点,首先在 SHARON 反应器中,通过控制温度和停留时间,将硝化控制在亚硝化阶段;然后在厌氧氨氧化反应器中,将剩余的氨氮与所生成的亚硝酸盐氮以等摩尔比例在厌氧氨氧化菌作用下生成氮气,数据表明约有80%以上的氨氮转化成了氮气。反应的主要控制条件为温度、碱度和水力停留时间;同时,厌氧氨氧化反应器中不得有溶解氧的存在。主要适用于处理污泥上清液和高氨氮、低碳源工业废水。世界上第一个生产性SHARON-厌氧氨氧化工艺已于2002年6月在荷兰鹿特丹Dokhaven污水处理厂正式运行,主要用于处理污泥消化上清液。

3

CANON (completely autotrophic nitrogen removal over nitrite工艺

原理是在厌氧氨氧化菌富集培养物中,存在有一定数量的好氧氨氧化菌,通过控制溶解氧浓度使得单个反应器或生物膜内中实现两类细菌的协调生长,从而实现生物脱氮的目的。其中主要进行了好氧氨氧化作用和厌氧氨氧化作用。由于厌氧氨氧化菌为严格厌氧菌,因此要实现与好氧氨氧化菌长期共存于同一个反应器,如何有效控制水中的溶解氧是一个关键性问题。由于 CANON 工艺所涉及的微生物均为自养型,因此无需外加碳源,与传统脱氮工艺相比,可减少 63%的供氧量和 100%的碳源,且由于只需要一个反应器,该工艺大大减少基建和运行费用。

目前 CANON 工艺的关键在于如何实现全程自动化操作管理,如果能针对 CANON工艺开发出一套经济高效的在线监测系统,则该工艺可成为一种经济性、实用性很强废水生物脱氮工艺。


厌氧氨氧化的优点

  • 由于厌氧氨氧化菌为自养型生物,其以无机碳作为碳源,因此无需外加有机碳源作为电子供体,不仅节约成本,而且防止了投加碳源所产生的二次污染。

  • 厌氧氨氧化反应在厌氧环境下,无需曝气,节省了供氧的动力消耗。

  • 反应过程中不产生 N2O,避免了传统硝化—反硝化工艺中产生的温室气体排放。

  • 由于厌氧氨氧化菌的倍增周期较长(11d),反应器一般采用不排泥的启动方式,因此产泥量少。

  • 厌氧氨氧化最高容积氮去除速率达 9.5kgN/(m3·d),远远高于传统的硝化反硝化工艺[容积氮去除率<0. 50kgN/(m3·d)]。


厌氧氨氧化的缺点

  • 厌氧氨氧化菌倍增时间较长(11d),细胞产率低,所以其富集培养较为困难,造成厌氧氨氧化工艺启动缓慢,世界上第一座生产性装置的启动时间长达 3 年多,过长的启动时间是其工程应用的重大障碍。

  • 培养环境要求苛刻,反应所需要的温度较高,实际水处理很难达到要求。

  • 高浓度 NH4+-N 和 NO2-N 存在对厌氧氨氧化反应也有抑制作用,因此厌氧氨氧化技术难以应用于高浓度氨氮的废水处理,所以有必要对厌氧氨氧化反应的微生物方面进一步深入研究。

  • 厌氧氨氧化反应器如果运行不当,会使得出水含有大量亚硝酸盐,且亚硝酸盐与污水中其他物质反应会产生致癌物质,对环境造成更为严重的危害。

  • 缺乏对工艺的性能、影响因素和优化方法及其技术经济评价的成熟方法,工程应用少。


垃圾渗滤液处理新技术(-)厌氧氨氧化技术

垃圾渗滤液污染物浓度高,成份复杂,处理难度高。随着排放标准要求不断提高,技术的重要性愈加凸显。我国渗滤液处理技术包含土地处理、物化处理、生物处理等。其中土地处理无法单独使用,由于处理难度问题和占地问题,近年来已很少应用。


目前常用技术


物化处理一般作为垃圾渗沥液处理中的预处理和深度处理;生物处理经济、有效地去除有机污染物,但单独采用生物处理一般无法达标,需要和其他工艺有机结合。目前大多采用包含预处理、生物处理、深度处理、污泥及浓缩液处理四项工艺内容的组合工艺。

  • 渗滤液预处理重点发展前期降低有机物和氨氮负荷,调节碳氮比,提高垃圾渗沥液的可生化性的相关技术,可以为后续生化处理节能增效。

  • 生化处理重点是加大对垃圾渗沥液高效生化处理技术的开发,如短程硝化反硝化技术、厌氧氨氧化技术等,一方面降低垃圾渗沥液的处理成本,另一方面提高氨氮的去除效果。

  • 深度处理-膜浓缩液处理和其他深度处理方式,重点是加快研究经济、可行的膜浓缩液处理技术,同时研究其他非膜法深度处理技术,如高级氧化、高效蒸发等。


新技术---厌氧氨氧化技术


厌氧氨氧化是指在厌氧的条件下,微生物直接以NH4作为电子供体,以作为电子受体,将NH4和NO2转变成N2的生物氧化过程。


厌氧氨氧化的新工艺

1

OLAND(Oxygen limited autotrophic nitrification and denitrification)工艺

OLAND工艺是部分硝化与厌氧氨氧化相耦联的生物脱氮反应系统。该工艺其原理是通过限氧调控(溶解氧0.1~0.3mg/L)实现了硝化阶段亚硝酸盐的稳定积累,并实现了生物脱氮在较低温度(22~30℃)下的稳定运行。OLAND工艺中,溶解氧是限氧亚硝化阶段的主要影响因素,而生物量和基质浓度、pH值和温度则影响厌氧氨氧化过程。

2

SHARON(single reactor for high activity 

ammonia removal over  nitrite)-厌氧氨氧化工艺

SHARON—厌氧氨氧化工艺指在两个反应器中分别实现部分硝化和厌氧氨氧化反应,具有优化两类细菌的生存环境、运行性能稳定的特点。该工艺的原理是利用硝化菌在较高温度下生长速率明显低于亚硝化菌生长速率的特点,首先在 SHARON 反应器中,通过控制温度和停留时间,将硝化控制在亚硝化阶段;然后在厌氧氨氧化反应器中,将剩余的氨氮与所生成的亚硝酸盐氮以等摩尔比例在厌氧氨氧化菌作用下生成氮气,数据表明约有80%以上的氨氮转化成了氮气。反应的主要控制条件为温度、碱度和水力停留时间;同时,厌氧氨氧化反应器中不得有溶解氧的存在。主要适用于处理污泥上清液和高氨氮、低碳源工业废水。世界上第一个生产性SHARON-厌氧氨氧化工艺已于2002年6月在荷兰鹿特丹Dokhaven污水处理厂正式运行,主要用于处理污泥消化上清液。

3

CANON (completely autotrophic nitrogen removal over nitrite工艺

原理是在厌氧氨氧化菌富集培养物中,存在有一定数量的好氧氨氧化菌,通过控制溶解氧浓度使得单个反应器或生物膜内中实现两类细菌的协调生长,从而实现生物脱氮的目的。其中主要进行了好氧氨氧化作用和厌氧氨氧化作用。由于厌氧氨氧化菌为严格厌氧菌,因此要实现与好氧氨氧化菌长期共存于同一个反应器,如何有效控制水中的溶解氧是一个关键性问题。由于 CANON 工艺所涉及的微生物均为自养型,因此无需外加碳源,与传统脱氮工艺相比,可减少 63%的供氧量和 100%的碳源,且由于只需要一个反应器,该工艺大大减少基建和运行费用。

目前 CANON 工艺的关键在于如何实现全程自动化操作管理,如果能针对 CANON工艺开发出一套经济高效的在线监测系统,则该工艺可成为一种经济性、实用性很强废水生物脱氮工艺。


厌氧氨氧化的优点

  • 由于厌氧氨氧化菌为自养型生物,其以无机碳作为碳源,因此无需外加有机碳源作为电子供体,不仅节约成本,而且防止了投加碳源所产生的二次污染。

  • 厌氧氨氧化反应在厌氧环境下,无需曝气,节省了供氧的动力消耗。

  • 反应过程中不产生 N2O,避免了传统硝化—反硝化工艺中产生的温室气体排放。

  • 由于厌氧氨氧化菌的倍增周期较长(11d),反应器一般采用不排泥的启动方式,因此产泥量少。

  • 厌氧氨氧化最高容积氮去除速率达 9.5kgN/(m3·d),远远高于传统的硝化反硝化工艺[容积氮去除率<0. 50kgN/(m3·d)]。


厌氧氨氧化的缺点

  • 厌氧氨氧化菌倍增时间较长(11d),细胞产率低,所以其富集培养较为困难,造成厌氧氨氧化工艺启动缓慢,世界上第一座生产性装置的启动时间长达 3 年多,过长的启动时间是其工程应用的重大障碍。

  • 培养环境要求苛刻,反应所需要的温度较高,实际水处理很难达到要求。

  • 高浓度 NH4+-N 和 NO2-N 存在对厌氧氨氧化反应也有抑制作用,因此厌氧氨氧化技术难以应用于高浓度氨氮的废水处理,所以有必要对厌氧氨氧化反应的微生物方面进一步深入研究。

  • 厌氧氨氧化反应器如果运行不当,会使得出水含有大量亚硝酸盐,且亚硝酸盐与污水中其他物质反应会产生致癌物质,对环境造成更为严重的危害。

  • 缺乏对工艺的性能、影响因素和优化方法及其技术经济评价的成熟方法,工程应用少。